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T h e n ,  f o r  t ~ t 1 : ~1 b-1 

s ( x , t ) > O ,  O < x < l .  

Scheme of the proof. 

we have condition (ll), and for t ~ t2 = e-~ > h, the functlon 

We introduce the function V by the equation 

I a (r) d r  = (~t) v ~ ~ = cons t  e x p  

0 

In the domain G+ = {i -- et ~ x < i,0 < t < t2} it will satisfy an equation and boundary con- 
dition from which, since W.s > 0 and in G+: ~xx = ~, ~x = ~, ~t = ~ (the subscript ~ means 
differentiation with respect to 5) in the case of large ~, we find by the maximum principle 
that t , ~  0 in G+ Hence the theorem follows. 

CoroZZGry 3. Using Theorem 4 and the dissertation mentioned near the start,,we can show 
that, for small t, the quantity s0, t) increases as ~-*(t). 

An example of relative permeability and capillary pressure functions which satisfy the 

conditions of Theorems 1-4 is given by 

/1 ($) = (I -- $)(I -- s ~- 1/382), /z (8) = ~o (I -- /1) -~ (i -- ~o) 85 (3 -- 28) 

Pc (s) - -  [ s " ( l , t  - -  s)] '/', p° = ~2/~, < t 
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THE SOLUTION OF PROBLEMS OF ELASTICITY THEORY BY THE METHOD OF 
ANALYTIC FUNCTIONS * 

S.A. KULIYEV 

Sherman's method /3/ is used to investigate some two-dimensional problems 
of elasticity theory for multiply connected regions. The solution is 
constructed by series expansion of the Kolosov-Muskhelishvili potential. 
Using Faber polynomials and conformal mapping, the original problem is 
reduced to the solution of linear systems of infinite algebraic equations 
in the expansion coefficients of analytical functions. The solution 
procedure is demonstrated by two examples. 

Many problems of elasticity theory reduce /1-3/ to finding analytic functions of the 
complex variable z = z + ty that are regular (or sinlge-valued) in a given region S and 
satisfy appropriate initial conditions. 

For the plane problem (the first boundary-value problem), when S is bounded by several 
smooth closed contours L,, L2 ..... L~ such that the last contour encloses all the previous 
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contours and they have no common points, the boundary condition on each contour L~ (k = i, 2 .... ) 
has the form 

,p (t) + t,p' (t'----) + ~ (t---U = f~,~) + +f~) o n  L~ (O.i) 
t 

t?> + ,t~ '+~ = ,  I tT~ + ~ > j  d., + e,+ 
t, 

For torsion and bending problems, 

(t)/- ~ (t--~ = I (t) + C k on L~ (0.2) 

t ?  + C~ *for torsion problems 

! (t) = */, (2 + it) ys_ ttzsy + 4 (I + ~) I for bending problems 

Here t identifies the points on the contours L~, ~ is an arbitrary fixed point on L~, 

and Ti~ and ~ are the projections of the external forces on the axes z and y, respect- 

ively. 
If a uniformly distributed load p~ is applied to the boundary of the region, then on 

each contour we have the equality 

Here C~ are some constants, one of which may be fixed arbitrarily. 
The accuracy of the solution of problem (0.i) and (0.2) largely depends on the correct 

choice of the analytical function and the mapping function (mapping the region S onto the 
unit circle). 

1. SeZeot4,0tt of itttlpping fttn~tions. The exterior of a regular curvilinear (nearly linear) 
polygon is mapped on the exterior of the unit circle in the plane ~, by the function 

I m) lab z = A  ~'+ ~2 2 ' " -" /%-  ; A = r a + 6  m =  ( 1 . t )  

where a is the radius of the circle described around the polygon, b is the radius of the 
circle inscribed inside the polygon, and q is the number of symmetry axes (the number of 
sides). 

The inverse of function (i.i) is defined by the equality 

E ( ~ / q )  

~, = x2 (z) = u a ~ ) u - q " ,  u - A 

tt----O 

( 1 . 2 )  

where E (k/q) is the integer part of k/q. 
Retaining the first six terms in the series (1.2), we obtain: for q = 6 (a regular 

hexogon) 
X2 (z) = u (1 - -  m u - '  - -  5 m 2 u  - * l  - -  4 0 m 3 u  - i s  - -  3 8 5 m ' u - ~ - -  4 0 9 5 m S u - a O . . . )  ( t . 3 )  

for q = 4 (a square) 
(z) = u ( t  - -  m u  - ~  - -  3 m 2 u - 8  - -  1 5 m 3 u - 1 ,  _ _  O l m 4 u - * 6  _ 6 1 2 m S u - 2 O . . . )  ( t . 4 )  

for q = 2 (an ellipse with semiaxes a and b) 

X2 (z) = u ( t  - -  m u  - ~  - -  2 m ' u  - 4  - -  5 r e ' u - '  - -  1 4 m 4 u  - 8  - -  4 2 m S u  -*o + . .  ) ( 1 . 5 )  

In all expansions (1.3)-(1.5), lzl>A. 
The exterior of the circle of radius r with two straight cuts along the abscissa axis is 

mapped to the exterior of the unit circle in the plane ~, by the function 

z=r ~ +pn~;n=r~1 i ~--IP&~ "v'' ( I ,6 )  
n=--1 

The inverse of function (i.6) is given by 

E(n/2) 
~1 - %- . - 1  ~ z ] 

n=o 
n 
~" / ' ~-++1 +(+_+)/2 {I, k=0 

6 ~ ) i  = 23+ ( - -  1) ~/2 C~,/2' k--~-~ ] - ~ ÷ '  ' ~ = 

- ~ = 0  ~I2, k = # O  
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The first i0 coefficients in expansion (1.6) were found: 

T~ 

eZ-Fr ~ i 1 1 

1 3 '2 t 6 t0 5 
%'s = --~÷ 

I 

1 10 3U 35 t4 
a ' aS - - ' ~ ' 4 -  a7 - -  a9 , Y o = Y 2 = % ' I = Y 6 = Y s = Y l o = O  

(~e is the coordinate of the endpoint of the 
If the inner contour L, in our problem 

cuts of different lengths, then the exterior 
unit circle in the plane ~, by the function 

z = r (w ÷ lfw-~--~'~-- t ) ,  w = ---Tb'--a' (~I 

cut). 
consists of a circle of radius r with two straight 
of this contour is mapped on the exterior of the 

t b ' ÷ a "  
÷ "~-i ) ÷ - ' - - '~ - -  , - -  c0 < a' < b' < oo. 

After some transformations, this formula can be simplified to the form (which is 
venient for inversion) 

n=O ~;-----n--sE(n/2) 
~/2 

"~= Z e(_l),C~ / b'--a' ~-,,+IC(,_,v)/, { 2 , . = 0  
k 4 / -~v+, , e =  t , , # : 0  

v=k--~E(~/2) 
n .  

6n = Z cn~.,+l (2 b'b' --+ a'a' ]~nt C(n_.)/,_n 
n~-----n--SE(n/2) 

e~' + r' e ; + r' 
a' -- b " =  2elf ' 2e~r 

con- 

(1.7~ 

Here ~ and ~ are the endpoint coordinates of the cut. 
In particular, for e, = --r (then a'= --I) or for e~ = r (then b'= I), the inner contour 

L~ has one cut. For le~l=le~]=e we have a'= --~,b'= a. Then formulas (1.7) and (1.6) are 
identical (in this case, ~=-T~,60= I~ 6n= 0 /4-6/). 

The inverse of function (1.7) is given by 

o £ 

~=0 ~=n--2E(n/2) 

"~ ~ / 4%"f "n I~" .,~2~-Ir(v-2n)/~ gv F.J 
n=v--SE (v/S) 

h~) = y,* ( -  ~)~ c~_~,,+~ (b' + ~')~ C<~-k)/~ 

i1.8) 

2. Se~otion of a.alytwal ( ~ )  f~tions. The function ~(z) regular in the bi- 
connected region S can be represented as the sum of two functions, one of which (1,(z)) is 
regular inside the outer contour L~ and the other (f,(z)) is regular outside the inner con- 
tour L,. Thus, ~(z) = & (z) + ~ (z), where 

h (~) = ~ %~~, /, (0 = ~ ~ [x, (t)]~ (2.1) 

Multiplying both sides of the second equality in (2.1) by the Cauchy kernel [2~I (t- z)l-Xdt 
and integrating over the entire contour L,. we obtain by residue theory, using expansion 
(1.2). 

w E(klq) 

k=1 ~----0 

Using equalities (1.8) and (2.2), we rewrite (2.1) in the form 

r ~ 

~=o k~o 

(2.3) 
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ak = ~ *  -k  (v) bk ~k6-11(k-v)/| , = ~ vv'(w--~)lq 
v=k--E(kls) "~--k 

The asterisks ** and * indicate that the summation index is incremented, respectively, 
by 2 and by q at each step. 

Note that if one of the contours L,,Ls is a circle, then some of the formulas are 
simplified, but equality (2.3) remains unchanged. 

The function $(z) has the form (similar to expansion (2.3)) 

co 

v ~' a (k) dv  = %~,1,* -~" (k) h.; : ~ , *  B k (.¢_~)/q Ak6-1/(v-k)/2' 
[=v--E(~/2) h=v--E(v/q) 

(2.4) 

Substituting the expressions for the analytical functions defined by equalities (2.3) 
and (2.4) into (0.i), we rewrite the boundary conditions on Lj(] = 1,2) for the plane problem 
in the form 

c o  o 0  c o  

d~T +2_.bk/-Z)--~ ~ + ~  b,k,~-'A~+ 
~=0 k~O b.=O k=O 

co c o  

-- k=0 

(2.5) 

Similarly, for torsion and bending problems, 

I-~ ~ \--A-] ÷ ~_~ d, (-[-) -F • b h (-T) =l(t)÷C, on L 
k = l  h=O h=O ~=0 

(2.6) 

3. E~les. The stressed state of a hexagonal plate with a central circular cavity and 
tWO straight cuts (Fig. l). A homogeneous isotropic plate is subjected to a uniformly dis- 
tributed load around the contour, using the mapping functions (i.I) and (1.6) in (2.5), we 
reduce the boundary conditions on Lj by simple transformations to four linear systems of 
algebraic equations and take q = 6 and x~ = 1. 

In numerical calculations, the first five terms were retained in each system. The 
calculations were carried out for the following ratios of the main dimensions of the plate 

cross-section: version I: ~A = 05, e/A = 0.6, b/r = 1.92; version 2 r/A = O.7, e/A = 0.8, b/r = 1.371428. 
The stresses ~ and "0 calculated at the characteristic points of the cross-section 

relative to the uniform load P applied to the outer contour (the load on the inner contour 
was zero) are presented in Table i. 

y 

?o 

, L z 

x 

J 

Fig.l Fig.2 

At the endpoints of the cut z =l e, we determined the stress intensity factor (SIF) and 
the critical value of the contour load. The SIF values expressed in units of 10K /(P~ 
(where I = e--r is the cut length) were 6.72 for version 1 and 12.84 for version 2. 
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For the critical contour load (when crack propagation beglns) we obtained I', 1534% 
for version 1 and P. -- o.803 % for version 2, where % is the average technical strength of 
the material. 

If we take A = R and m = 0 in the linear systems of infinite algebraic equations 
described above, the problem reduces to finding the stressed state of a circular plate weak- 
ened by a central circular hole and two straight cuts. For r/R ~ 02 and l < r the results 
obtained for o0~SIF, and the critical load P agree with previously published data /7/. 

The toPsion of a hollow 8qunPe beam with two cuts (Fig.2). From the boundary conditions 
(2.6), using the mapping functions (i.i) and (1.6), we obtain after some transformations 
(equating the coefficients of equal powers of the variable T) two linear systems of infinite 
algebraic equations. 

Table 1 Table 2 

Version -°o/P Version ]~z/(~b) 

i 1 

z/r °riP 

t.2t 0,0012 
1.3 0,44 
1.6 --0,25 
2.0 --t  .0014 

1.t5 0,003 
1.2 --0.t2 
t .3 0.34 
1.43 --t  ,002 

2.68 
2.22 
1.98 
t.72 

4.2t 
3.84 
3.33 
2,43 

r/b xxzl(p.xb) 

0.7 
0,8 

~;0 1.~-~ 
0.8 
0.9 

1;o 1.~-62 

1. 769 
0.84 
1.3617 

t .96 
0,972 
t ,47 

Retaining the first five equations in each system, we find the shear stresses ~z and 
~z from the formula 

where • is the torsion angle; for version i: ~b= 05, e/b= 0.6; for version 2. rib = 0.5, Ub= 0.7. 
The values of ~z and ~, calculated at characteristic points of the beam cross-section 

are given in Table 2. 
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